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Abstract— Due to technological limitations and budget con-
straints, spatiotemporal fusion is considered a promising way
to deal with the tradeoff between the temporal and spatial
resolutions of remote sensing images. Furthermore, the generative
adversarial network (GAN) has shown its capability in a variety
of applications. This article presents a remote sensing image
spatiotemporal fusion method using a GAN (STFGAN), which
adopts a two-stage framework with an end-to-end image fusion
GAN (IFGAN) for each stage. The IFGAN contains a generator
and a discriminator in competition with each other under the
guidance of the optimization function. Considering the huge
spatial resolution gap between the high-spatial, low-temporal
(HSLT) resolution Landsat imagery and the corresponding
low-spatial, high-temporal (LSHT) resolution MODIS imagery,
a feature-level fusion strategy is adopted. Specifically, for the
generator, we first super-resolve the MODIS images while also
extracting the high-frequency features of the Landsat images.
Finally, we integrate the features from the MODIS and Land-
sat images. STFGAN is able to learn an end-to-end mapping
between the Landsat–MODIS image pairs and predicts the
Landsat-like image for a prediction date by considering all
the bands. STFGAN significantly improves the accuracy of
phenological change and land-cover-type change prediction with
the help of residual blocks and two prior Landsat–MODIS image
pairs. To examine the performance of the proposed STFGAN
method, experiments were conducted on three representative
Landsat–MODIS data sets. The results clearly illustrate the
effectiveness of the proposed method.

Index Terms— Generative adversarial network (GAN), multi-
source satellite data, remote sensing, spatiotemporal fusion.

I. INTRODUCTION

IN AREAS such as dynamic monitoring, change detection,
and land-cover classification, high spatial resolution remote

sensing images with a dense time series are needed to capture
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detailed land surface dynamics [1]–[10]. However, due to tech-
nological limitations and budget constraints, there is often a
tradeoff between the temporal and spatial resolutions of remote
sensing images [11]–[14]. In recent years, although great
breakthroughs have been made in Earth observation through
the availability of remote sensing images with high spatial
and temporal resolutions from multiplatform satellites, such
as Sentinel-2 and the China High-resolution Earth Observation
System (CHEOS), the current availability of remote sensing
data is still insufficient in practical applications because of the
cloud cover and other disturbances [15], [16]. The insufficient
remote sensing data cannot meet the requirements of long-term
and detailed land surface dynamics studies, which require
dense historical time-series remote sensing images with a
high spatial resolution [17]–[20]. Spatiotemporal fusion is a
feasible and cost-effective way to promote the applications of
the current Earth observation data. Spatiotemporal fusion aims
to integrate multisource satellite images to obtain images with
both high spatial and high temporal resolutions. For example,
MODIS data are characterized by a high temporal resolution
and low spatial resolution (LSHT), whereas Landsat Enhanced
Thematic Mapper Plus (ETM+) data are characterized by a
high spatial resolution and low temporal resolution (HSLT)
[21], [22]. Based on one or two Landsat-MODIS image pairs
on prior dates and one MODIS image on the prediction
date, spatiotemporal fusion models can combine the spatial
resolution of Landsat imagery with the temporal frequency
of MODIS imagery to generate a Landsat-like image on the
prediction date.

In recent years, many spatiotemporal fusion methods have
been proposed in an attempt to aggregate remote sensing
data from various sensors at different spatial and tempo-
ral resolutions. Generally speaking, the current spatiotempo-
ral fusion methods can be classified into three categories:
1) weight function-based methods; 2) unmixing-based meth-
ods; and 3) learning-based methods [23], [24]. In the weight
function-based methods, the fine pixel values are estimated
through combining the information of all the input images by
weight functions [24]. Among the weight function-based algo-
rithms, the most representative examples are the spatial and
temporal adaptive reflectance fusion model (STARFM) [25]
and its enhanced version (ESTARFM) [26]. The classic
STARFM builds a simple approximate relationship between
the HSLT and LSHT pixels and searches similar neighbor-
ing pixels according to the spectral difference, the temporal
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difference, and the location distance. Considering the existence
of complex heterogeneous areas, Zhu et al. [26] proposed
ESTARFM by assigning different conversion coefficients for
homogeneous and heterogeneous areas to modify the weights
of the neighboring pixels. However, both algorithms are built
under the assumption that the proportion of each land-cover
type does not change during the observation period, which
does not consider the human activities on the Earth’s surface,
such as disturbance events (e.g., forest fires) and changes in
urban land use. To deal with this problem, Hilker et al. [27]
proposed a spatial and temporal adaptive algorithm for
mapping reflectance change (STAARCH) for sudden distur-
bance event mapping. Furthermore, Zhao et al. [28] devel-
oped a robust adaptive spatial and temporal image fusion
model (RASTFM) for complex land surface changes. The
disadvantage of the weight function-based methods is that
adopting neighboring pixels may introduce blur into the pre-
dicted image, which, in turn, incurs the loss of high-frequency
details.

Based on the linear spectral mixing theory,
the unmixing-based methods unmix the coarse pixels to
estimate the value of the fine pixels. Zhukov et al. [29] first
proposed the multisensor multiresolution technique (MMT)
to integrate remote sensing images with different spatial
resolutions and acquired at different times. However,
MMT was confronted with two problems: 1) the large
errors caused by spectral unmixing and 2) the lack of
endmember spectral variability. In order to address these
issues, Zurita-Milla et al. [30] proposed the spatial–temporal
data fusion approach (STDFA), which obtains the prediction
by considering the reflectance change estimated through
unmixing the endmember reflectance in a moving window.
STDFA has also been enhanced by the use of an adaptive
moving window size [31]. However, the unmixing-based
methods still have difficulty in land-cover-type change
prediction, due to the lack of high spatial resolution land-use
databases, which limits their application.

With the development of machine learning, learning-based
methods have been proposed in recent years. Huang and
Song [32] proposed the sparse representation-based spa-
tiotemporal reflectance fusion model (SPSTFM), which was
the first method to bring dictionary-pair learning techniques
from natural image super-resolution to spatiotemporal data
fusion. Following SPSTFM, to deal with the single prior
Landsat-MODIS image pair case, Song and Huang [33]
developed another sparse representation-based spatiotemporal
satellite image fusion (SSIF) model through one-pair image
learning. The sparse representation-based methods aim to
extract the mapping relationships between the HSLT Landsat
and LSHT MODIS images via learning a dictionary pair.
They then predict the fusion image by weighting predic-
tions from the two end dates of the observation period.
However, the sparse representation-based methods need to
relearn the dictionary for the images of different research
areas, which is inefficient. Compared with dictionary learning,
deep learning has a better generalization ability over diverse
remote sensing scenes. Song et al. [34] proposed a spa-
tiotemporal image fusion method using a deep convolutional

neural network (STFDCNN). The convolutional neural net-
work (CNN) is adopted to model the relationship between
the coarse-resolution (CR) image and fine-resolution (FR)
image, and a high-pass fusion model is used for the prediction.
Liu et al. [35] improved STFDCNN by taking the temporal
dependence and temporal consistency into consideration and
proposed a two-stream CNN for spatiotemporal image fusion
(StfNet). However, there are still several limitations to these
two CNN-based methods. First, STFDCNN and StfNet are not
end-to-end learning models. The prediction stage is divided
into two parts—CNN-based mapping and reconstruction—
which increases the complexity of the algorithms. Second,
each band needs to be trained separately, which increases the
amount of parameters, memory usage, and training time.

In this article, to address the abovementioned problems,
we propose a novel spatiotemporal fusion model using a
generative adversarial network (STFGAN). As an emerg-
ing deep neural network, the generative adversarial network
(GAN) [36] shows great potential for exploiting the high-level
information and has achieved superior performances in image
style transfer, super-resolution, and cloud removal [37]–[40].
In the proposed method, a two-stage framework is developed
to improve the accuracy of the fusion results, in which each
stage contains an end-to-end image fusion GAN (IFGAN).
The generator and discriminator are optimized in an alter-
nating manner to make the generator work as efficiently as
possible. Specifically, the generator network consists of three
parts: 1) the super-resolution of the MODIS images; 2) the
high-frequency feature extraction of the Landsat images; and
3) fusion of the MODIS and Landsat feature maps. The first
two parts are achieved via residual blocks.

Compared with the previous learning-based fusion methods,
the proposed STFGAN method has the following advantages.

1) To the best of our knowledge, this is the first end-to-end
trainable network based on deep learning that can be
used to solve the spatiotemporal fusion problem.

2) To generate better spatiotemporal fusion results from the
generator, we have developed a residual-blocks archi-
tecture for both the Landsat input and MODIS input
in the generator network. This approach can capture
more textural details and can significantly improve the
accuracy of the phenological change and land-cover-type
change prediction, with the help of the two prior
Landsat-MODIS image pairs.

3) All bands of the remote sensing images are input into
the network together, rather than each band separately,
which reduces the time and space consumption, espe-
cially for large-scale images.

The rest of this article is organized as follows. In Section II,
we introduce the proposed STFGAN method in detail. The
experimental results and analysis are provided in Section III.
Section IV concludes this article.

II. METHODOLOGY

A. From GAN to Super-Resolution (SRGAN) to STFGAN

In the natural image processing field, the task of recovering
an original high-resolution (HR) image from its corresponding
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low-resolution (LR) counterpart is called single-image super-
resolution. The development of super-resolution provided
motivation for the development of spatiotemporal fusion. For
example, Yang et al. [41] first proposed a super-resolution
algorithm based on sparse representation. Inspired by this,
Huang and Song [32], [33] applied the sparse representation
to spatiotemporal fusion and proposed the SPSTFM and SSIF
algorithms. Subsequently, the application of CNNs in the field
of image super-resolution prompted the development of the
STFDCNN and StfNet algorithms.

In 2018, Ledig et al. [38] first applied an SRGAN and won
first place in the CVPR-NTIRE 2018 Image Super-Resolution
Championship. SRGAN defines a discriminator network Dθ D ,
which is optimized in an alternating manner along with the
generator GθG to solve the adversarial min–max problem

min
θG

max
θD

EI HR∼ptrain(I HR)[log DθD (I HR)]
+ EI LR∼pG(I LR)[log (1 − DθD (GθG (I LR)))] (1)

where I HR and I LR represent the reference HR image and
its corresponding LR counterpart, respectively. D(·) represents
the output probability of the input · coming from the reference
data ptrain rather than the generator pG . E represents the
mathematical expectation. θ∗ denotes the weights and biases
of the deep network and is obtained by optimizing the loss
function. In the process of solving the objective function,
the training generator G generates a super-resolved image to
fool the discriminator D, and the training discriminator D
distinguishes the super-resolved image from the real image.
In this way, the generator can learn to generate super-resolved
images that are highly similar to the real images, even when
the discriminator has difficulty in distinguishing the real and
fake images.

Based on SRGAN, we aim to employ the GAN to complete
the task of spatiotemporal fusion. We adapted our generator
and discriminator architectures from those in SRGAN. Clearly,
there are some differences between super-resolution and spa-
tiotemporal fusion.

1) Resolution Difference: Generally speaking, the magnifi-
cation factor in super-resolution ranges from 2 to 4 and
up to 8. However, in spatiotemporal fusion, there can
be a huge spatial resolution gap between the two data
resources, usually ranging from 8 to 16 (e.g., Landsat
with a 250-/500-m spatial resolution and MODIS with a
30-m spatial resolution). In this case, directly applying
the super-resolution method to spatiotemporal fusion
will result in less accurate results.

2) Spatial Difference: It is known that remote sensing
images contain more information than natural images.
This is because remote sensing images contain more
geographic information. The complex feature types and
rich textural features increase the difficulty of spatiotem-
poral fusion.

3) Temporal Difference: In single-image super-resolution,
there is only one LR image used as input. In spatiotem-
poral fusion, in contrast, one or two pairs of LR-HR
image pairs on prior dates are available. The spatial
details of the image pairs, as a supplement information

Fig. 1. Target of STFGAN. Five remote sensing images are used to predict
the unknown Landsat image at time 2.

Fig. 2. Flowchart of the two-stage framework. [·]_d and [·]_u indicate the
downsampled version (downsampled by four times) or the upsampled version
(upsampled by four times) of [·].

source, can be fully used to improve the spatial resolu-
tion of the LR images on the prediction date.

4) Spectral Difference: Remote sensing images have mul-
tiple bands, unlike natural images containing only three
bands of red, green, and blue.

We selected Landsat and MODIS images as the HSLT and
LSHT images, respectively, to demonstrate the effectiveness
of STFGAN. Based on the temporal difference, we considered
that there were two pairs of Landsat-MODIS images available,
one at time 1 (L1-M1) and the other at time 3 (L3-M3).
Together with the MODIS image at time 2 (M2), we used these
five images (L1, L3, M1, M2, M3) to predict the unknown
Landsat image at time 2 (L2), as shown in Fig. 1. Considering
the resolution difference and spatial difference, STFGAN
makes full use of the prior image pairs to compensate for the
great resolution difference between the HR and LR images and
provides more textural and structural information for the L2
prediction. With regard to the spectral difference, and differing
from the existing learning-based methods [34], [35], the pro-
posed STFGAN method uses an NIR–red–green composite of
the remote sensing image for the network input rather than
learning the mapping of each band separately, which reduces
the training time and the amount of parameters.

Notably, the resolution difference between the MODIS
image and the Landsat image is not an integer multiple and can
be considered to be approximately 16 times. Therefore, we first
upsample the MODIS image through bicubic interpolation to
make the image size difference an integer multiple of 16.
One important fact is that the interpolation does not change
the resolution of the image but only the pixel size [42].
Considering that the SRGAN model has only a limited ability
for super-resolution, we adopt a two-stage framework for the
proposed STFGAN method, as shown in Fig. 2, in which
each stage is instantiated with an IFGAN with the resolution
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Fig. 3. Overall flowchart of IFGAN. The top and the bottom parts indicate
the flowchart of the generator and discriminator, respectively.

enhancement factor of 4. For the first stage, all the MODIS
images at times 1–3 are upsampled by four times (M1_u,
M2_u, and M3_u) and utilized as the input of the generator
GM_u−L with the Landsat images at times 1 and 3, to predict
the intermediate image I2. At this moment, although the image
size of the output I2 is the same as the target image L2,
the resolution of the image obtained by this generator is
only improved by four times theoretically. Compared with the
target image L2, the predicted image I2 may not be optimal.
Therefore, the downsampled versions of L1, I2, and L3 by
four times (L1_d, I2_d, and L3_d) and L1 and L3 are added
to the input of the generator GL_d−L of the second stage,
to derive the final L2. It should be noted that in the training
phase, the generators of the two stages are not identical. One
is trained with upsampled MODIS images (M_u) and Landsat
images (L), and the other is trained with downsampled Landsat
images (L_d) and Landsat images (L).

B. Network Architecture of IFGAN

In the two-stage framework, each stage contains the same
end-to-end IFGAN to generate the spatiotemporal fusion
images. Taking the first stage as an example, the overall
flowchart of IFGAN is demonstrated in Fig. 3. In the training,
the generator G generates a spatiotemporal fusion image with
the input of two pairs of prior image pairs and one MODIS
image on the prediction date to fool the discriminator D, and
the discriminator D distinguishes the spatiotemporal fusion
image from the real image L2. In testing, we can use the
trained generator G to derive the predicted I2.

1) Generator: Considering the spatial difference between
super-resolution and spatiotemporal fusion, it is clear that
we cannot recover L2 with high quality only from M2.
Due to the huge resolution gap between Landsat images
and MODIS images, there is little complex geographic infor-
mation contained in the Landsat image remaining in the
corresponding MODIS image, which is a barrier to restoring
structural and textural details. Due to the temporal dependence
of remote sensing images, the L1–M1 and L3–M3 image
pairs are available, which allows the generator to obtain the

supplementary information from the prior image pairs to help
recover L2 from M2. The generator uses an NIR–red–green
composite of the remote sensing images as input and out-
put. As shown in Fig. 4(a), the generator network can be
divided into three parts: 1) super-resolution of the MODIS
images; 2) high-frequency feature extraction of the Landsat
images; and 3) fusion of the MODIS and Landsat feature
maps.

In the first part, we first upsample M1–M3 and concate-
nate them. In this way, M1_u and M3_u provide additional
content information for M2_u. In the existing learning-based
spatiotemporal fusion methods [34], [35], a three-layer CNN is
used to extract the features from the MODIS images. However,
the network architecture of the three-layer CNN is not deep
enough to extract high-level abstract features [43]. Thus,
we adopt a deeper network to extract the features from the
concatenated MODIS images. In theory, the training accuracy
of the neural network output increases as the number of layers
increases. However, it turns out that for some problems such
as vanishing gradients and exploding gradients, a sufficiently
deep network can, nevertheless, be difficult to train under the
guidance of the optimization function. A residual network is
adopted to solve this problem by adding the input of the
previous layer to the next layer, which indicates that more
information is transmitted to the next layer, and the richness
of the information improves the effect of the network training.
The deeper the residual network, the better the effect on
the training set. Therefore, the core of the first part is the
16 residual blocks with the same layout. Each residual block
contains two convolutional layers with a small filter kernel
size of 3 × 3 followed by batch-normalization layers and a
rectified linear unit (ReLU) as the activation function. The
16 residual blocks fully learn the features of the MODIS
images, which contain the phenological change information
and land-cover type change information, laying down the
foundation for the next step of super-resolution. Two trained
subpixel convolutional layers (PixelShuffler × 2) are used to
increase the spatial resolution of the MODIS images by four
times.

With respect to the second part, L1 and L3 are first con-
catenated. In super-resolution, there are no extra HR natural
images to guide the recovery of the LR natural images.
In contrast, in spatiotemporal fusion, although the resolution
of the MODIS images is much lower than that of the Landsat
images, there are some Landsat images available during the
same period, which can guide the recovery of the MODIS
images. During a short time period, it can be assumed that
the land cover of the study site has not been changed signifi-
cantly. In other words, the structural and textural information
contained in L1 and L3 is similar to that in L2. Based on this,
the structural and textural information of L1 and L3 can be
considered as a complement to M2_u that provides structural
and textural details and aids the recovery of L2 from M2_u.
We employ eight residual blocks to extract the high-frequency
features of the concatenated Landsat images, such as detailed
textures and structures, which contributes to the restoration of
the field edges. The output size of this subnetwork is the same
as the output size of the first part.
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Fig. 4. Network architecture of IFGAN with the corresponding kernel size (k), number of feature maps (n), and stride (s) indicated for each convolutional
layer. (a) and (b) Network architecture of the generator and discriminator, respectively.

After these two parts, the feature maps extracted from the
FR images and CR images are concatenated by a ConcatLayer.
The low-frequency information is obtained from the MODIS
images, whereas the high-frequency information is obtained
from the Landsat images. By combining these two sources of
information, L2 can be recovered with high-quality content
and structural details. Finally, a convolutional layer is used to
reduce the output tensor dimension to restore the predicted I2.

2) Discriminator: The discriminator is used to distinguish
the reference images (L2) and the spatiotemporal fusion
images (I2). As shown in Fig. 4(b), it contains eight con-
volutional layers with an increasing number of 3 × 3 filter
kernels, increasing by a factor of 2, from 64 to 512 kernels,
as in VGGNet [44]. The eight strided convolutional layers fully
extract the features of the input and improve the accuracy of
the discriminator’s classification, which helps the generator
to produce more realistic images. The 512 resulting feature
maps are followed by two dense layers, and then, the prob-
ability of the sample classification is output. Compared with
a CNN, the GAN enables the fusion results to include more

high-frequency information and finer details, whereas the tra-
ditional CNN can only improve the fusion results by selecting
the appropriate objective function.

In order to indicate the training process by adversarial loss
and obtain the optimal generator, we use the Wasserstein
distance to describe the difference between the distributions
of the two data sets (the data set of reference images and
the data set of spatiotemporal fusion images) [45]. Differing
from the discriminator architecture of SRGAN, we remove the
sigmoid activation function from the last layer and output the
probability of sample classification directly for the Wasserstein
distance computation. In addition to this, the loss function and
the optimizer are also changed accordingly, which is illustrated
in Section II-C.

C. Loss Function of IFGAN

The loss function of IFGAN is formulated as the weighted
sum of a content loss and an adversarial loss component. The
content loss is formulated as the weighted sum of a mean
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square error (mse) loss LSTF
MSE and a VGG loss LSTF

VGG/ i, j
. MSE

loss LSTF
MSE is the most widely used optimization target for

image restoration, defined as the Euclidean distance between
the reconstructed image GθG (M1, M2, M3, L1, L3) and the
reference image L2. It is calculated as shown in (2), where
W and H describe the dimensions of the reference image and
the reconstructed image. The mse loss provides solutions with
lower root-mse (RMSE) values that are, however, perceptually
rather smooth and less convincing

LSTF
MSE = 1

W H

W∑
x=1

H∑
y=1

((L2)x,y − GθG (M1_u,

M2_u, M3_u, L1, L3)x,y)
2 .(2)

In contrast to mse loss, VGG loss LSTF
VGG/ i, j

is closer to
perceptual similarity. In other words, VGG loss provides
the solutions with higher structural similarity (SSIM) val-
ues. The VGG loss is defined as the Euclidean distance
between the feature representations of the reconstructed image
GθG (M1, M2, M3, L1, L3) and the reference image L2

LSTF
VGG/ i, j

= 1

Wi, j Hi, j

Wi, j∑
x=1

Hi, j∑
y=1

(φi, j (L2)x,y − φi, j (GθG (M1_u, M2_u,

M3_u, L1, L3))x,y)
2 (3)

where φi, j indicates the feature map obtained by the j th
convolution (after activation) before the i th max-pooling layer
within the VGG19 network. Wi, j and Hi, j describe the dimen-
sions of the corresponding feature map φi, j within the VGG
network. The content loss combines the advantages of the
two loss functions, with which we can recover the high- and
low-frequency information of the image at the same time and
generate the spatiotemporal fusion image closest to the real
image.

Adversarial loss is defined as shown in (4), where N
indicates the number of training samples. As mentioned in
Section II-B2, in order to indicate the training process by
discriminator loss, we use the output probabilities of the
discriminator over all the training samples for the Wasserstein
distance computing without log function. This encourages the
generator network to learn to create solutions that are highly
similar to the real image, by trying to fool the discriminator.
At the same time, this encourages the discriminator network to
optimize itself, to improve the ability to distinguish between
spatiotemporal fusion images and real images

LSTF
Adv = 1

N

N∑
n=1

DθD (L2) − 1

N

N∑
n=1

DθD (GθG (M1_u, M2_u,

M3_u, L1, L3)). (4)

The generator G and discriminator D are trained to solve
the min–max optimization problem

min
G

max
D

LSTF = LSTF
MSE + α LSTF

VGG/ i, j︸ ︷︷ ︸+ β LSTF
Adv︸ ︷︷ ︸

content loss adversarial loss (5)

where G tries to minimize this objective against an adversary
D that tries to maximize it. α and β are constants and are
empirically set as 0.2×10−6 and 10−3, respectively, following
the success of the work by Ledig et al. [38]. This objective
function is optimized by adopting RMSProp [45] with standard
backpropagation. We empirically set the learning rate to 10−4

and decay rate to 0.1.

III. EXPERIMENTS

In this section, we first introduce the data sets used in the
experiments and the evaluation indices used in the analysis.
The experimental results are then presented. We then analyze
the results and provide a discussion on the effectiveness and
limitations of the proposed method.

A. Study Sites and Data Sets

The three data sets considered in this study were named the
Coleambally Irrigation Area (CIA), Lower Gwydir Catchment
(LGC), and Shenzhen data sets. The CIA is located in southern
New South Wales, Australia, covering an area of 2193 km2.
The data set was made up of 17 cloud-free Landsat-MODIS
pairs from October 2001 to May 2002. All the Landsat images
were acquired by the Landsat-7 ETM+ sensor and were
atmospherically corrected by using MODTRAN4 [46]. The
MODIS images were the MODIS Terra MOD09GA Collection
5 data product [47]. The CIA data set includes abundant
phenological changes but fewer land-cover-type changes.

The LGC is located in northern New South Wales, Australia,
covering an area of 5440 km2. The data set was made up
of 14 cloud-free Landsat-MODIS pairs from April 2004 to
April 2005. All the Landsat images were acquired by
the Landsat-5 TM sensor and were atmospherically cor-
rected using the algorithm proposed in [48]. The MODIS
images were again the MODIS Terra MOD09GA Collection
5 data [47]. The LGC data set can be considered as having sig-
nificant land-cover-type changes, with regular shape changes
due to the occurrence of a large flood.

Shenzhen is located in Guangdong province, China, cov-
ering an area of the size of 225 km2. The Shenzhen data
set was made up of three Landsat-MODIS pairs acquired in
the same month but in different years, on November 1, 2000,
November 7, 2002, and November 8, 2004, respectively. The
Landsat images were also acquired by the Landsat-7 ETM+
and were radiometrically and atmospherically corrected using
the MODIS 6S approach [49]. The MODIS images were
obtained directly from the Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov/lpdaac). The Shenzhen
data set is unique due to its huge time gap between the
three image pairs and the intense land-cover-type changes with
irregular shape changes over the four years, which increases
the difficulty of the prediction.

For the CIA data set, there are six bands with a Landsat
image size of 1720×2040; for the LGC data set, there are six
bands with a Landsat image size of 3200 × 2720; and for the
Shenzhen data set, there are three bands with a Landsat image
size of 500 × 500. For the three data sets, all the MODIS
images were upsampled to a quarter of the image size of
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the Landsat image using bicubic interpolation. Differing from
STFDCNN, which learns the mapping of each band separately,
STFGAN uses an NIR–red–green composite of the remote
sensing images as input and output. Thus, bands 4, 3, and 2
(NIR, red, and green bands) were selected for the Landsat
images, and the corresponding bands 2, 1, and 4 (NIR, red, and
green bands) were selected for the MODIS images. Differing
from other deep learning-based methods, STFGAN inputs all
three bands into the generator together, rather than training
each band separately. In order to remove invalid pixels and
facilitate segmentation, the images in the CIA data set were
cropped to the size of 1280 × 1792, the images in the LGC
data set were cropped to the size of 3072 × 2560, and there
was no processing for the Shenzhen data set because it was
only for testing.

We used an image group as a set of inputs and a reference
image. Each image group was made up of three image pairs
in a continuous time sequence, as shown in Table I. Each row
denotes one image group, and the middle one is the prediction
date. For training purposes, we selected nine image groups
in the CIA data set and six image groups in the LGC data
set. The size of the training subimages was set as 256 × 256
for all the image groups. In the training data set, there were
1035 subimage groups, including 315 subimage groups from
the CIA data set and 720 subimage groups from the LGC
data set. For testing purposes, excluding the image groups for
training, we selected four image groups from the CIA data set,
one image group from the LGC data set, and the image group
from the Shenzhen data set.

B. Evaluation Indices

For the evaluation, we compared the fusion results on the
prediction date to the real observed Landsat images. In order to
evaluate the results quantitatively, we used several evaluation
indices to evaluate the fusion effects in terms of content,
spectrum, and structure, i.e., the average absolute difference
(AAD), the RMSE, the SSIM, the spectral angle mapper
(SAM), and the erreur relative global adimensionnelle de syn-
thèse (ERGAS).

AAD and RMSE reflect the reflectance difference between
the predicted image and the observed image. AAD and RMSE
are defined as follows:

AAD = 1

P

P∑
i=1

|L̂(i) − L(i)| (6)

RMSE =
√√√√ 1

P

P∑
i=1

(L̂(i) − L(i))2 (7)

where L̂ and L represent the predicted image and the observed
image, respectively, the terms L̂(i) and L(i) represent the pixel
value of the i th pixel of the predicted image and the observed
image, and P is the total number of pixels. The smaller the
value, the better the fit of the fusion result to the predicted
image.

SSIM measures the similarity of the overall structures
between the predicted image and the observed image. It is

TABLE I

DATA SET SETTINGS

calculated as

SSIM = (2μLmuL̂ + C1)(2σL L̂ + C2)(
μ2

L + mu2
L̂

+ C1
)(

σ 2
L + σ 2

L̂
+ C2

) (8)

where μL and muL̂ represent the mean of the fusion result
and the real image, respectively, σL and σL̂ represent their
variances, σL L̂ represents the covariance of L and L̂, and
C1 and C2 represent small constants. The larger the value,
the higher the similarity between the fusion result and the real
image.

SAM measures the spectral distortion of the fusion result.
It is defined as follows:

SAM = 1

P

P∑
i=1

arccos

∑B
j=1(L̂ j (i)L j (i))√∑B

j=1(L̂ j (i))2
∑B

j=1(L j (i))2
(9)

where B is the total number of bands. A smaller SAM means
a closer match to the real image in spectral recovery.

ERGAS evaluates the overall fusion results. It is defined as

ERGAS = 100
h

l

√√√√ 1

B

B∑
j=1

(
RMSE(L j )

μ j

)2

(10)

where h is the spatial resolution of the real image, l is the
spatial resolution of the fusion image, L j is the j th band
image, and μ j is the mean of the j th band of the real image.
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TABLE II

QUANTITATIVE PERFORMANCE EVALUATION FOR THE TEST DATA SET

The smaller the value and the closer it is to zero, the higher
the fidelity of the overall fusion result.

C. Experimental Results and Analysis

For the testing, we used a test data set made up of four
image groups from the CIA data set, one image group from
the LGC data set, and the image group from the Shenzhen
data set to illustrate the performance of STFGAN in predicting
phenological changes and land-cover-type changes. To thor-
oughly evaluate the performance of the proposed algorithm,
ESTARFM [26], SPSTFM [32], and STFDCNN [34] were
selected as benchmarks for the comparison.

1) Test Data Set: For all six image groups in the test data
set, the quantitative evaluation results of the average of all
the bands in terms of AAD, RMSE, SSIM, SAM, ERGAS,
and time cost (for every subimage) for the fusion results of
ESTARFM, SPSTFM, STFDCNN, and STFGAN are listed
in Table II. For the deep learning-based methods (STFDCNN
and STFGAN), the model only needed to be trained once and
could then be applied to all the test image groups, so we only
compare the test time cost. To ensure a fair comparison, all the
test experiments were performed on a Windows workstation
equipped with an Intel Xeon E3-1220 processor at 3.10 GHz
and 8-GB RAM. ESTARFM, SPSTFM, and STFGAN were
coded in IDL, MATLAB, and TensorFlow, respectively. STFD-
CNN was implemented with the support of TensorFlow and
MATLAB. It should be noted that the test time computations
of all the methods were performed with the CPU. The best
results for each evaluation index are labeled in bold, and the
second-best results are underlined.

From Table II, we can observe that the proposed STFGAN
method achieves lower AAD, RMSE, SAM, and ERGAS
values and higher SSIM values than ESTARFM, SPSTFM,
and STFDCNN for the whole test data set. This indicates
that the proposed STFGAN method is capable of producing
fusion results with a higher accuracy from the textural detail
and spectral aspects. In addition, both deep learning-based
methods show the ability to save time, and the proposed
STFGAN method takes less time than STFDCNN due to
its end-to-end workflow. The weight function-based method
and sparse representation-based method take much more time
when testing on large-scale images. We show and analyze the
experimental results of the three data sets separately in the
following sections.

Fig. 5. Illustration of the CIA image group on November 8, 2001. (a)–(c)
Landsat images and (d)–(f) corresponding MODIS images. (a) and (d) Pair
was acquired on November 1, 2001. (b) and (e) Pair was acquired on
November 8, 2001. (c) and (f) Pair was acquired on November 24, 2001.

2) Coleambally Irrigation Area: We selected one of the four
image groups for testing from the CIA data set to demonstrate
the details of the fusion results. The image pairs in this
image group were acquired on three dates: November 1, 2001,
November 8, 2001, and November 24, 2001. Scene subsets are
shown in Fig. 5 using NIR–red–green as the red–green–blue
composite and identical linear stretching. The CIA data set can
be considered as a spatially heterogeneous study site for the
small field sizes. In this image group, the temporal dynamics
are mainly associated with crop phenology, and the land-cover
types vary less over time.

The fusion results of ESTARFM, SPSTFM, STFDCNN, and
STFGAN are shown in Fig. 6. To facilitate the comparison,
we use white rectangles to mark some representative areas in
the fusion images. The top row shows the actual observed
Landsat image and the fusion results, and the bottom row
shows their zoomed details for the parts in the white rec-
tangles. We also used the square error images (i.e., the error
images of the fusion results in mse metrics) from the fusion
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Fig. 6. Comparison between the ground truth and the predicted images for the CIA image group on November 8, 2001. (a) Ground truth. (b) Predicted
image obtained by ESTARFM. (c) Predicted image obtained by SPSTFM. (d) Predicted image obtained by STFDCNN. (e) Predicted image obtained by our
proposed STFGAN method. (f)–(i) Square error images from the fusion results for ESTARFM, SPSTFM, STFDCNN, and STFGAN.

Fig. 7. Illustration of the LGC image group on January 13, 2005. (a)–(c)
Landsat images and (d)–(f) corresponding MODIS images. (a) and (d) Pair
was acquired on December 28, 2004. (b) and (e) Pair was acquired on
January 13, 2005. (c) and (f) Pair was acquired on January 29, 2005.

results to discern the differences between different methods
visually. By visually comparing the fusion images with the
ground truth, it can be seen that all the methods can capture

the phenological changes between the prediction image and
the images on the prior dates. However, ESTARFM introduces
some unpleasant and disturbing color in some pixels, which
may have been caused by the filtering strategy. From the
square error images, it can be clearly observed that the
deviation between the fusion result of STFGAN and the
ground truth is the smallest. For some spatially heterogeneous
areas, such as the zoomed areas in the white rectangles,
it is clear that STFGAN results in smaller prediction error
than ESTRAFM, SPSTFM, and STFDCNN, which reveals
that the proposed STFGAN method is more robust than the
others in dealing with a spatially heterogeneous case. For
the sparse representation-based method, the image features
need to be designed manually, which brings instability to
the performance, resulting in severe spectral distortion in the
fusion result of SPSTFM. In the fusion result of STFDCNN,
there is a little spectral distortion at the edge of the field, due
to the high-pass modulation [34].

The quantitative evaluation results in terms of AAD, RMSE,
SSIM, SAM, and ERGAS are listed in Table III. It can
be observed that the deep learning-based methods perform
better than the weight function-based method and sparse
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Fig. 8. Comparison between the ground truth and predicted images of the LGC image group on January 13, 2005. (a) Ground truth. (b) Predicted image
obtained by ESTARFM. (c) Predicted image obtained by SPSTFM. (d) Predicted image obtained by STFDCNN. (e) Predicted image obtained by our proposed
STFGAN method. (f)–(i) Square error images from the fusion results for ESTARFM, SPSTFM, STFDCNN, and STFGAN.

TABLE III

QUANTITATIVE PERFORMANCE EVALUATION FOR THE CIA DATA SET

TABLE IV

QUANTITATIVE PERFORMANCE EVALUATION FOR THE LGC DATA SET

representation-based method. The reason for this is that deep
learning can map the relationship between the MODIS images
and the Landsat images more precisely than the other methods.
The proposed STFGAN method achieves the lowest AAD and
RMSE values in all three bands, which indicates that STFGAN
can reconstruct the Landsat image more precisely than the
other three methods. This can be further illustrated through
the comparison with ERGAS. STFGAN achieves the highest

SSIM values in all three bands, which shows that STFGAN
captures more structural details in the surface reflectance than
ESTARFM, SPSTFM, and STFDCNN. This might be due
to the fact that STFGAN uses residual blocks to extract the
features from the MODIS and Landsat images, which can learn
more structural information and textural details. Thus, more
structural details are accurately predicted. STFGAN achieves
the lowest SAM value, which illustrates that STFGAN has also
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TABLE V

QUANTITATIVE PERFORMANCE EVALUATION FOR THE SHENZHEN DATA SET

achieved more accurate results than other methods in spectral
recovery. In general, the results of the proposed STFGAN
method are better than those of the other benchmark methods.
The proposed method can not only predict high-quality spatial
information but can also achieve a superior performance in
color retention.

3) Lower Gwydir Catchment: The image pairs of the test
image group in the LGC data set were acquired on three
dates: December 28, 2004, January 13, 2005, and January 29,
2005, as shown in Fig. 7. The LGC data set can be con-
sidered as a study site containing both phenological changes
and significant land-cover-type changes. In this image group,
the land-cover-type changes are mainly associated with reced-
ing floodwater, during which time the shape of the flooded
area changed regularly. The fusion results and the square error
images are shown in Fig. 8. The ground truth and the fusion
results are shown in the first row, the zoomed details for the
parts in the white rectangles are shown in the second row, and
the error images are shown in the third row. By comparing
the square error images, it can be clearly observed that the
fusion result of STFGAN is the closest to the ground truth.
For the areas where flooding occurred (the zoomed areas
in the white rectangles), SPSTFM performs the worst, with
spectral distortion and severe blurring. The fusion results of
both ESTARFM and STFDCNN are affected by the prior
image pairs and deviate greatly from the ground truth. The
comparison of the fusion results and the square error images
demonstrates that the result of STFGAN has minimal color
and textural differences, which illustrates the superiority of
STFGAN in spectral information retrieval and the prediction
of significant land-cover-type changes with regular shapes.

A quantitative evaluation is provided in Table IV. It can
be observed that the proposed STFGAN method again outper-
forms the other three methods, which demonstrates the supe-
riority of STFGAN, both in phenological change prediction
and land-cover-type change prediction. Moreover, compared
with SPSTFM and STFDCNN, STFGAN achieves lower AAD
and RMSE values, higher SSIM values, lower SAM value,
and lower ERGAS value over all the bands. This means that
STFGAN delivers superior performance in terms of content,
structure, spectrum, and comprehensive effects. The improve-
ment of STFGAN over ESTARFM, SPSTFM, and STFDCNN
at the LGC study site in terms of AAD, RMSE, SSIM, SAM,
and ERGAS illustrates the progress that STFGAN has made
in capturing complex change information of land-cover types,

Fig. 9. Illustration of the Shenzhen image group on November 7, 2002.
(a)–(c) Landsat images and (d)–(f) corresponding MODIS images. (a) and
(d) Pair was acquired on November 1, 2000. (b) and (e) Pair was acquired
on November 7, 2002. (c) and (f) Pair was acquired on November 8, 2004.

as STFGAN incorporates supplementary information provided
by the prior Landsat-MODIS image pairs into the prediction.

4) Shenzhen: In order to illustrate STFGAN’s ability for
generalization and capacity to predict more complex land-
cover-type changes, an image group excluded from the training
study sites was considered. As shown in Fig. 9, the image pairs
in this image group were acquired on December 28, 2004, Jan-
uary 13, 2005, and January 29, 2005, respectively. Shenzhen
can be seen as a study site containing land-cover-type changes
with irregular shapes. In addition, the land-cover-type changes
are mainly associated with human activities over the four
years. The huge time gap means intense and irregular changes
in the urban land-cover types and shapes, which increases the
difficulty and complexity of the prediction.

The visual comparison and quantitative evaluation are
shown in Fig. 10 and Table V. Overall, STFGAN achieves
the best or second-best results on all the bands. In the fusion
results of ESTARFM and SPSTFM, there are some unpleasant
stains and bright spots, respectively, reducing the content
similarity of the results with the ground truth. There is also
a color difference between the fusion result of STFDCNN
and the ground truth. For the region in the black circle,
the land-cover types and shapes change irregularly with the
construction and demolition of the buildings, and some content
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TABLE VI

COMPARISON BETWEEN THE SINGLE- AND TWO-STAGE FRAMEWORKS

Fig. 10. Comparison between the ground truth and predicted images of the Shenzhen image group on November 7, 2002. (a) Ground truth. (b) Predicted
image obtained by ESTARFM. (c) Predicted image obtained by SPSTFM. (d) Predicted image obtained by STFDCNN. (e) Predicted image obtained by our
proposed STFGAN method. (f)–(i) Square error images from the fusion results for ESTARFM, SPSTFM, STFDCNN, and STFGAN.

and structural information is only contained in the MODIS
image at time 2. In this region, the prediction of STFGAN
is not as precise as that of the other methods. This can be
attributed to the small weight of the MODIS image at time 2 in
the input images. This will be addressed in our future work.
Although the other methods may seem to be able to predict
such irregular land-cover-type changes, in fact, their errors are
also quite large. Furthermore, it can be observed from the
square error images that their predictions of the content and
structural details of the other regions are not as accurate as
those of STFGAN. Moreover, from Table V, we can observe
that STFGAN still achieves competitive results, on the whole,
which is consistent with the visual analysis. The fusion result
of STFGAN in the Shenzhen study site illustrates the excellent
generalization ability of the proposed method.

D. Ablation Study for the Two-Stage Framework

To validate the effectiveness of the two-stage frame-
work, we compared it with a single-stage framework.

The performance of the single- and two-stage frameworks was
evaluated on the whole test data set for all three study sites.
The results are listed in Table VI. From Table VI, it can be
observed that generally speaking, the two-stage framework
performs better than the single-stage framework over the
whole test data set. In order to compare the effect of the
single- and two-stage frameworks on the different study sites,
we selected a set of image groups from the three study sites for
a comparative analysis. For the selected image groups in the
CIA and LGC study sites, the two-stage framework improves
the accuracy by acquiring a more similar content of prediction
image and a better characterization and delineation of the
type changes. The two-stage framework performs well in the
Shenzhen study site, which was not included in the training
study sites. Thus, the two-stage framework improves the gener-
alization ability of the proposed method. It is also worth men-
tioning that the fusion results of the single-stage framework
are, in fact, more accurate than those of the other benchmark
methods.
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IV. CONCLUSION

In this article, we have proposed a novel remote sensing
image STFGAN with a two-stage framework, considering the
huge resolution difference between Landsat and MODIS data.
For each stage, the generator network takes the coarse MODIS
image on the prediction date and two prior Landsat-MODIS
image pairs as input and the corresponding fine Landsat
image as output. The features super-resolved from the MODIS
images and the high-frequency features extracted from the
Landsat-like images are fused to generate the predicted Land-
sat image. In this way, the two prior image pairs can provide
the spatial information as the auxiliary information for the
MODIS image on the prediction date. Moreover, under the
adversarial supervision of the game between the discriminator
and the generator, the generator is forced to generate as realis-
tic an image as possible. The proposed STFGAN method was
compared with several state-of-the-art spatiotemporal fusion
methods by conducting experiments on three data sets, and
the experimental results confirmed the effectiveness and gen-
eralization ability of STFGAN from both spatial and spectral
perspectives. In addition, STFGAN, as a ready-to-use model
after the training, requires a much shorter computation time in
the inference phase. Our future work will continue along the
line of improving the prediction accuracy of land-cover-type
changes with irregular shapes.
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